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Twelve teams of investigators constituted a group which analyzed phenotypes related to metabolic syndrome, making use
of the available longitudinal measurements from the family component of the Framingham Heart Study or the simulated
data, as distributed by Genetic Analysis Workshop 13 (GAW13). Body mass index, obesity, lipid abnormalities, glucose, or
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from the longitudinal measurements, including considering single or multiple cross-sectional time points, single ages,
minimum values, maximum values, means, other lifetime values, ever/never dichotomy, or age at onset of some threshold
value. Approaches also differed in the family structures utilized (sib pairs to full extended pedigrees), the genetic data
considered (two-point or multipoint), and the statistics calculated (model-free and parametric), and led to a diverse set of
analyses being performed. Inferences were made about heritability, and attempts were made to map underlying genes. Over 40
genome-wide linkage analyses were conducted. Despite the broad range of approaches, several regions of the genome were
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INTRODUCTION

Often obesity, dyslipidemia, hypertension, and
diabetes cluster together, a pattern known as
metabolic syndrome, syndrome X, insulin resis-
tance syndrome, or the deadly quartet. Medically,
this syndrome is important, as it is characterized
by an increased risk for cardiovascular disease
and type 2 diabetes [DeFronzo and Ferrannini,
1991; Kaplan, 1989; Lakka et al., 2002; National
Cholesterol Education Program, 2002; Reaven,
1988]. Components of metabolic syndrome are
abdominal obesity, atherogenic dyslipidemia (AD)
(elevated plasma triglyceride, small low-density
lipoprotein (LDL) particles, and low levels
of high-density lipoproteins (HDL cholesterol)),

insulin resistance (with or without glucose intol-
erance), elevated blood pressure, a proinflamma-
tory state, and a prothrombotic state, with ethnic
variability [Abbasi et al., 2002, Araneta et al., 2002;
Ferrannini et al., 1997; Saad et al., 1991].
Despite the abundant epidemiologic and experi-

mental research that has been published on
metabolic syndrome, definitions of this syndrome
vary widely [Laaksonen et al., 2002; Liese et al.,
1998]. The National Cholesterol Education Pro-
gram Expert Panel (NCEP) [NCEP, 2002] recently
published criteria for a clinical diagnosis of
metabolic syndrome requiring three or more
of the following: fasting plasma glucose of at
least 110mg/dl (6.1mmol/l), serum triglycerides
of at least 150mg/dl (1.7mmol/l), serum HDL
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cholesterol less than 40mg/dl (1.04mmol/l) and
50mg/dl (1.30mmol/l) for men and women,
respectively, blood pressure of at least 130mm
Hg systolic or 85mm Hg diastolic, or waist girth
(a measure of central adiposity) of more than
102 cm for males and more than 88 cm for females.
Although there is clear evidence of common

underlying factors in metabolic syndrome, most
genetic epidemiological studies have investigated
the underlying phenotypes separately. A handful
of genome-wide screen linkage studies examining
traits individually support the existence of com-
mon genetic influences on multiple components of
this syndrome [Atwood et al., 2002; Hong et al.,
1997, 1998; Kissebah et al., 2000; Liese et al., 1997].
Moreover, a few studies explicitly attempted to
dissect the multivariate nature of metabolic
syndrome, and found evidence of common genet-
ic factors [Arya et al., 2003; Mitchell et al., 1996].
The GAW13 data set offers a unique opportunity
to examine components of metabolic syndrome
from multiple perspectives, because data were
available longitudinally frommultiple phenotypes
related to this syndrome. The 12 papers to be
summarized here all analyzed some aspect of
metabolic syndrome. In this summary, we will
describe the methods, results, and discussion of
the papers from this group of investigators.

METHODS

CONSTRUCTION OF PHENOTYPES

A major challenge of GAW13 was the enormous
volume and complexity of the data, which
included multiple different measurements made
repeatedly, but sometimes differently, across two
generations. From the data provided, the con-
tributors in this group used a variety of ap-
proaches to construct phenotypes, in some cases
based on a single lipid-related or body mass
phenotype, and in others using a broader meta-
bolic syndrome phenotype. Some groups selected
a single particularly informative time point
[Martin et al., 2003; Stein et al., 2003] or age
[Moslehi et al., 2003] on clinical grounds, while
others compared the results at multiple time
points [Lee et al., 2003; North et al., 2003]. Some
groups constructed lifetime measures in a variety
of ways. For quantitative phenotypes, one ap-
proach was to focus on the maximum [Allen-
Brady et al., 2003] or minimum [Horne et al., 2003]
value, while others considered instead the average
value over time [Geller et al., 2003; McQueen et al.,

2003]. For binary phenotypes, one group defined
a trait to be considered present if it was ever
observed [Yip et al., 2003]. Another group used
modeling to construct the phenotype as part of
a broader new methodological approach [Ghosh
et al., 2003]. One group focused on age at onset,
using in part a survival approach [Engelman et al.,
2003]. It should be noted that one other critical
approach, that of repeated measures, was not
included in Group 10, but is covered elsewhere
[Gauderman et al., 2003].

LINKAGE AND ASSOCIATION METHODS

The unifying theme of the 12 sets of investiga-
tors comprising GAW13 Group 10 was the
analysis of a phenotype or phenotypes that related
to metabolic syndrome, but the approaches used
to test linkage and association were diverse.

Standard applications. For the more standard
approaches, two-point and multipoint, parametric
and nonparametric methods, and sib pairs to
extended pedigree structures were represented.
Exact two-point quantitative and qualitative
parametric linkage analyses were performed on
full pedigree structures as implemented in
LINKAGE [Lathrop et al., 1986] by Horne et al.
[2003], and using a modified version of VITESSE
[O’Connell and Weeks, 1995] by Yip et al. [2003].
Exact multipoint quantitative parametric linkage
analysis was carried out using GENEHUNTER
[Kong and Cox, 1997; Kruglyak et al., 1996] on
pedigrees of restricted size [Horne et al., 2003].

Several different methods were used for calcu-
lation of nonparametric linkage statistics. Affected
sib-pair analysis using exact identity by descent
(IBD) calculations for dichotomous traits was
implemented with GAS [Young, 1993] by Yip
et al. [2003]. A variety of Haseman-Elston regres-
sion-based variants for exact likelihood linkage
analysis for quantitative and qualitative traits
were performed on sibships using SAGE [SAGE,
2002; Engelman et al., 2003; Moslehi et al., 2003;
Yip et al., 2003]. Nonparametric statistics were
also applied to pedigrees of restricted size. Exact
multipoint, model-free, pedigree regression-based
linkage analysis, as implemented in MERLIN
[Abecasis et al., 2002], was applied by Geller
et al. [2003]. Exact multipoint standard nonpara-
metric linkage analyses in GENEHUNTER were
also performed by Yip et al. [2003].
Variance components methods were used by

some investigators [Geller et al., 2003; Horne et al.,
2003; Martin et al., 2003; McQueen et al., 2003;
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North et al., 2003]. They carried out two-point and
estimated multipoint variance-component linkage
analyses on the full pedigree structures as imple-
mented by SOLAR [Almasy and Blangero, 1998].
Bivariate variance components analyses were
performed by Martin et al. [2003], using SOLAR.
Exact multipoint variance-component linkage ana-
lyses were also performed in MERLIN on restricted
pedigree structures [Geller et al., 2003].

Novel methodologies and applications. Several
papers introduced novel methodologies (or used
existing methods in some novel way) for linkage
or association analysis. Ghosh et al. [2003]
introduced a novel extension to a linkage
method that utilizes the contrast function in
sibships in a robust regression-based linkage
statistic [Ghosh and Reich, 2002]. This new
adaptation for longitudinal data uses sibship
data and standardizes over the multiple time
points considered. The method assesses linkage
significance empirically, and is thus robust to
underlying genetic model distributions. This new
method was tested among the 100 replicates for
the simulated total cholesterol quantitative
phenotype in sibships from the offspring cohort.
Some existing methodologies were reintroduced

in analyses of Framingham data. Horne et al.
[2003] used a Markov chain Monte Carlo blocked
Gibbs sampling method, as implemented in
MCLINK [Thomas et al., 2000], to estimate multi-
point inheritance vectors in extended pedigrees.
These were used to calculate the multipoint theta-
LOD (TLOD), a hybrid linkage statistic which uses
multipoint inheritance vectors at a marker posi-
tion in a two-point linkage statistic. This method
boasts the advantages of using both multipoint
analysis, with respect to inheritance information,
and two-point analysis, with respect to increased
robustness to model misspecification [Göring and
Terwilliger, 2000; Abkevich et al., 2001]. In addi-
tion, Horne et al. [2003] used by-pedigree linkage
scores that were extracted from MCLINK for
additional comparisons across analyses at the
pedigree level. These by-pedigree scores were
proposed as a promising tool to evaluate potential
linkage regions.
Two different approaches were taken to reduce

multivariate data. Stein et al. [2003] performed
exact multipoint, multivariate linkage analysis
with full sibling pairs, using structural equation
modeling (SEM) in a likelihood ratio framework
to simultaneously analyze five component traits
of metabolic syndrome. The original concept was
introduced by Eaves et al. [1996], and is imple-

mented in the program Mx [Neale, 1999]. The
basic underlying method is to fit two models, one
with the SEM alone and one with the SEM and the
IBD probabilities for each sibling pair at the locus
of interest. Linkage to that locus is then tested
using a likelihood ratio test. This technique provides
a new, truly multivariate method for locating genes
involved in syndromes such as metabolic syndrome,
and additionally should increase power to locate
genes with pleiotropic effects. A different approach
was taken by Martin et al. [2003], who attempted to
reduce metabolic syndrome multivariate traits by
applying factor analyses to the genotypic and
phenotypic correlation matrices, and then went a
step further by computing factors from a pairwise
correlation matrix of genome-wide LOD scores. In
this way, they could determine how metabolic
syndrome symptoms cluster according to different
components of variance.
A novel association-based analysis was intro-

duced by Allen-Brady et al. [2003]. They used an
intuitively simple empirical approach to extend
case-control association analysis to extended
pedigrees. The benefit of such a method is the
ability to utilize already ascertained linkage
resources for valid association analyses. This
method was applied in the simulated data, which
were determined to have only low, and unin-
tended, linkage disequilibrium between adjacent
microsatellite markers. Microsatellite markers are
not ideal for association tests, and it will be
interesting to see this method implemented with
single-nucleotide polymorphism data elsewhere.

RESULTS

SINGLE TIME-POINT APPROACHES

Three separate contributions constructed meta-
bolic syndrome phenotypes from the Framingham
data by selecting information from a single time
point. Two of these papers [Martin et al., 2003;
Stein et al., 2003] utilized a single examination and
examined the suite of metabolic syndrome traits
using multivariate statistics. The other paper
[Moslehi et al., 2003] attempted to identify QTLs
influencing body mass index (BMI) at a single age.
With respect to the single examination, Stein

et al. [2003] addressed the question of identifying
QTLs for metabolic syndrome. The impetus for
this paper was that there is a known shared
environmental influence on the components of
metabolic syndrome, which if unaccounted for,
may inflate the genetic variance. As described
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above, they searched the genome for QTLs, using
structural equation models (SEM) to covariate
adjusted measurements taken at the fifth time
point in the offspring cohort for systolic blood
pressure (SBP), ln fasting plasma glucose (for
which an additional power transform was ap-
plied), ln triglycerides, HDL cholesterol, and BMI.
They chose the final time point, hypothesizing
that study subjects would best demonstrate any
progression to metabolic syndrome by this time
point. For the genome scan, two SEMs were
evaluated for each sib-pair, i.e., a model with only
cross-trait covariances, and a model with cross-
trait covariances weighted by allele-sharing IBD at
a locus. Their results indicated that the QTLs were
mainly influenced by glucose, BMI, and SBP.
Martin et al. [2003] addressed the question of

how to reduce multivariate data. The impetus for
this paper was that in common complex traits,

genes are likely to exert an effect on multiple
traits. Previously, factor analysis was used to
generate the factors from the phenotypic and
genetic correlation matrix but not from
genome-wide LOD score correlations. Therefore,
they used bivariate variance components
analysis in SOLAR to estimate the phenotypic
and genetic correlations between cholesterol,
HDL, triglycerides, systolic blood pressure, and
BMI. Additionally, they ran variance-components
linkage analysis at 10-cM intervals for these traits,
and estimated the correlations between LOD
scores for each pair of traits. The correlation
matrices were factor-analyzed, using SAS with
varimax rotation. They reported a pattern of
loadings that were different across matrices,
suggesting that we may gain more information
about the interactions of traits by using multiple
approaches.

TABLE I. LOD signals 43.0 with supporting evidencea

Signal Location (cM) 1-LOD interval Phenotype Method Software

Chromosome 2

North et al. 3.4 151 129–158 HDL exam 11 MPT-VC SOLAR
Martin et al. 2.6 150 HDL MPT-VC SOLAR
North et al. 1.1 122 HDL exam 20 MPT-VC SOLAR
Moslehi et al. 1.0 167 BMI MPT-sib-pair-nonpar SAGE
McQueen et al. 1.7 179 Glucose MPT-VC SOLAR
Stein et al. 1.6 180.6 MS MPT-sib-pair-nonpar Mx

Chromosome 11

Moslehi et al. 3.0 143.1 134–end BMI MPT-sib-pair-nonpar SAGE
Engelman et al. 1.4 134.1 Overweight 2PT-sib-pair-nonpar SAGE
Horne et al. 1.6 161.7 Low TG:HDL 2PT-par LINKAGE
Horne et al. 1.1 161.7 Low TG:HDL MPT-MCMC-par MCLINK
Strug et al. 2.1 131 Mean gain BMI 2PT-VC SOLAR

Chromosome 16

Geller et al. 3.2 76 52–83 BMI MPT-VC SOLAR
Geller et al. 2.8 78.6 BMI MPT-VC MERLIN
Geller et al. 2.5 63.7 BMI MPT-Reg MERLIN
McQueen et al. 1.3 75 BMI MPT-VC SOLAR
Engelman et al. 1.2 63.7 Overweight survival 2PT-sib-pair-nonpar SAGE
Li et al. 2.9 46 Mean BMI(4 time points) MPT-VC SOLAR
Cheng et al. B1.1 B70 Mean BMI (3 exams) MPT-VC SOLAR

Chromosome 19

Moslehi et al. 3.3 86.4 NA (2PT) BMI 2PT-sib-pair-nonpar SAGE
Moslehi et al. 1.8 86.4 BMI MPT-sib-pair-nonpar SAGE
Engelman et al. 1.0 86.4 Obese-survival 2PT-sib-pair-nonpar SAGE
Martin et al. 1.0 80 HDL MPT-VC SOLAR

Chromosome 22

Horne et al. 3.4 20.9 NA (2PT) Low TG:HDL 2PT-par LINKAGE
North et al. 1.4 19 HDL exam 15 MPT-VC SOLAR
Horne et al. 1.3 20.9 Low TG:HDL 2PT-VC SOLAR
Horne et al. 1.0 20.9 Low TG:HDL MPT-MCMC-par MCLINK

aEntries shown in italics are from other groups. Locations are in Haldane map units. MS, metabolic syndrome; MPT, multipoint; 2PT,
two-point; VC, variance-components; Reg, regression; nonpar, nonparametric; par, parametric.
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Moslehi et al. [2003] addressed the question of
identifying QTLs for BMI at a single age. They
chose to analyze the first BMI value available for
each individual measured between ages 40–50
from the parental and offspring cohort, hypothe-
sizing that BMI at this age should be a stable
measurement. Significant familial correlation esti-
mated in the SAGE program FCOR justifies the
utilization of this age range. Two-point sib-pair
regression analysis was performed using SAGE
SIBPAL. The strongest evidence for linkage from
two-point analysis was at D19S246 (P¼0.000051)
on chromosome 19. A string of markers on
chromosomes 2, 3, and 11 gave suggestive
evidence for linkage, using multipoint analysis.
The regions on chromosomes 2 and 3 are
consistent with other published data [Deng
et al., 2002; Wu et al., 2002]. Modest evidence for
linkage was also found on chromosome 6
(P¼0.03), overlapping the region identified by
Atwood et al. [2002] in this same data set.

MULTIPLE TIME-POINT APPROACHES

Two separate contributions constructed meta-
bolic syndrome phenotypes from the longitudinal
Framingham data by selecting information from
multiple time points. North et al. [2003] examined
HDL in females at three time points, and Lee et al.
[2003] examined the correlations of multiple
metabolic syndrome phenotypes (glucose, total
cholesterol, HDL, SBP, and BMI) at multiple time
points.
North et al. [2003] explored the evidence for

linkage of HDL at three time points (t1, t2, and t3),
spaced approximately 8 years apart and corre-
sponding respectively to visits 11, 15, and 20 for
the parental cohort, and visits 1, 2, and 4 for the
offspring and spouses. Using variance-component
methods implemented in SOLAR, they estimated
the heritability and genetic correlation of HDL at
each time point, performed linkage analysis of
HDL at each time point in males and females,
separately and combined, and tested for genoty-
pe� sex interaction at a QTL at each time point.
North et al. [2003] found significant and sugges-
tive evidence for a QTL on chromosome 2q
influencing HDL variation in females across time
points (LOD at t1¼3.2, t2¼1.9, and t3¼2.4). These
results are similar to those of Almasy et al. [1999],
who reported a linkage of unesterfied HDL to
chromosome 2q at 140 cM, but did not report an
interaction with sex.

Lee et al. [2003] examined the familial aggrega-
tion of components of metabolic syndrome (glu-
cose, total cholesterol, HDL, SBP, and BMI) across
multiple time points in both the parental cohort
and offspring cohort groups combined. The
parental cohort and offspring cohort examinations
were combined, using the calendar date of
examinations, into two groups from 1971–1975
and 1984–1987. For the parental cohort, two
examinations were averaged for each time point.
Sibling-sibling, parent-offspring, avuncular, cou-
sin, and spousal correlations were calculated on
age- and sex-adjusted residuals from SAS, using
FCOR in SAGE 4.1. Lee et al. [2003] found that
the correlations between pairs of relatives were
consistent with a pattern of genetic inheritance
and across the two time points examined for all
the components of metabolic syndrome examined.
However, they found that spousal correlations
were higher than expected under the genetic
model. Using a commingling analysis im-
plemented in SEGREG in SAGE 4.1, the
three-mean model fit best for each of the
variables examined, supporting a pattern of
genetic inheritance.

LIFETIME APPROACHES

Several authors used the longitudinal observa-
tions available to measure some lifetime aspect of
metabolic syndrome or its components. A lifetime
quantitative phenotype using longitudinal data
can be defined in different ways, such as an
extreme observation (maximum or minimum) or
an average. A dichotomous phenotype can be
created from a quantitative trait in a longitudinal
data set, according to one or more thresholds at
one or more time points.
Three contributions addressed the genetics of

atherogenic dyslipidemia (AD). Using the
Framingham data, Horne et al. [2003] performed
linkage analysis on the minimum of the ratio of
serum triglyceride (TG) to HDL, while Yip et al.
[2003] chose to manipulate the serum TG and
HDL levels to produce a dichotomous trait. Allen-
Brady et al. [2003] tested for association of
candidate regions in the simulated data for
maximum HDL. No contributors chose to create
a phenotype that sought to address the three lipid
abnormalities that characterize AD (TG, HDL, and
small low-density lipoprotein particles). Yip et al.
[2003] classified an individual as affected with AD
if serum HDL was at or below the 25th percentile
for age and sex, and serum TG was at or above the
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90th percentile for age and sex. An individual was
classified as unaffected if serum HDL was above
the 25th percentile for age and sex, and serum TG
was below the 90th percentile for age and sex. To
avoid a trichotomy, Yip et al. [2003] folded the
individuals with high TG only or low HDL only
into an unknown category.
With the minimum TG:HDL ratio adjusted for

age, BMI, SBP, and blood sugar (BS), Horne et al.
[2003] were able to obtain a two-point LOD score
over 3.0 with LINKAGE (see Table I). However,
Yip et al. [2003] were not able to find a LOD score
Z1.0 with their AD dichotomous phenotype for
the same region. This result is somewhat puzzling,
given the similarity of the phenotypic definitions
of these two teams of investigators. From a purely
statistical perspective, one expects a continuous
random variable to carry with it more information
than a categorical variable, and thus to be more
powerful. On the other hand, the careful applica-
tion of thresholds when categorizing a continuous
variable can be successful in linkage analyses by
eliminating near-phenocopies or capturing a
single gene of major effect. The choices of thresh-
olds by Yip et al. [2003] for serum TG at the 90th
percentile and HDL at the 25th percentile are
reasonable. However, the classification of indivi-
duals (over 500) with high TG only or low HDL
only into the unknown category may have de-
creased the amount of linkage information in the
sample. Additionally, differences in pedigree
structures used in each study may have played
a role.
Allen-Brady et al. [2003] performed association

analyses using full extended pedigrees consider-
ing five simulated candidate regions for a dichot-
omous trait, such that cases and controls were
classified as the upper and lower quartile ex-
tremes of maximum lifetime HDL, respectively.
Valid tests for association were established using
an empirical approach, which is robust to the
familial correlations inherent in pedigrees [Camp
and Farnham, 2001]. Results indicated the im-
portance of correcting for familial correlations in
association tests, and highlighted the lack of
power in simply choosing microsatellite linkage
markers for association studies. On analyzing
underlying linkage disequilibrium (LD) in the
five candidate gene regions, there was only one
gene region for which significant LD existed in
sufficient replicates to study. In these replicates,
LD was significant but low; however, the levels of
LD were comparable to those observed for the real
GAW13 Framingham data for markers with the

same resolution. This is not surprising, since LD
was not purposefully simulated and thus not
intended, and the simulations attempted to
parallel the real GAW13 Framingham data. This
study also suggests that the use of microsatellite
marker data for association testing should be done
with prudence.
The contribution by McQueen et al. [2003] was

unique among those performing a lifetime analy-
sis in choosing to study metabolic syndrome. They
did so by defining a quantitative composite
phenotype derived from TG, HDL, SBP, BS, and
BMI. The variables SBP, HDL, and BMI were
judged approximately normally distributed. How-
ever, TG was log-transformed to obtain approx-
imate normality, and BS was ranked across all
measurements and then the resulting ranks were
normalized. Each of these variables was regressed
on the number of cigarettes smoked per day and
four categorical variables representing alcohol
consumption, and then the residuals were stan-
dardized within groups defined by gender and
1-year age bands. A metabolic syndrome score
(MSS) was defined as a linear combination of the
five standardized residuals (MSS¼ SBP�HDL
+TG+BS+BMI). Finally, these sums were aver-
aged to obtain a lifetime MSS. Multipoint linkage
analysis did not reveal any LOD scores of 3.0 or
more. Multipoint analyses were conducted with
the standardized residuals of each of the indivi-
dual traits SBP, HDL, TG, BS, and BMI, but no
significant linkage was detected.
One genome screen [Geller et al., 2003] exam-

ined body mass using a lifetime definition. They
used a log-transform of average BMI adjusted by
regression for age and smoking (cigarettes per
day) for each sex and cohort separately, and found
a LOD score over 3.0 (see Table I). Evidence was
also found on chromosome 6, with a LOD score of
2.7. Geller et al. [2003] also compared the results of
SOLAR with those obtained from MERLIN-VC
and MERLIN-REGRESS. The peaks were gener-
ally consistent among the three methods, but there
were some differences in significance levels.
Analyses using data at all available time points

in the lifetime of an individual are expected to be
more informative and hence more powerful from
an inference point of view, compared with a
summary measure based on a representative time
point or a simple average of all time points. Ghosh
et al. [2003] defined a measure standardized by
the variance-covariance matrix of the observations
over the time points. They considered the total
cholesterol level in the younger cohort of the
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simulated data set. For each sibship, they defined
a contrast function as a linear combination of the
trait (total cholesterol) values with sum of the
coefficients equal to 0. Ghosh and Reich [2002]
had developed a linear regression of the squared
contrast function on a quadratic function of the
matrix of IBD scores of different sib pairs within a
sibship, but had found that the regression does
not perform well as the level of dominance
increases. As an alternative, Ghosh et al. [2003]
proposed a nonparametric regression based on
kernel-smoothing [Silverman, 1986], using the two
variables. Since the answers were available to
them, they evaluated the power of their method
by the proportion of replications in which a
significant linkage peak was within a 10-cM
window of the true position of a QTL. For 4 of
the 6 simulated genes controlling total cholesterol
levels, they found significant evidence of linkage
in more than 30% of the replications.

AGE-AT-ONSET APPROACHES

Studies show that complex diseases often have a
variable age at onset, and there may be substantial
loss of power in linkage and/or association
analyses which ignore the dependence on age.
Engelman et al. [2003] considered two different
linkage analyses accounting for age at onset of the
phenotypes defined as obesity and overweight in
the Framingham data. Their first analysis was
restricted to individuals with an age at onset prior
to 35 years; they classified an individual as
overweight or obese if his or her BMI was greater
than 27 or 30, respectively. The paradigm of this
restricted analysis was to differentiate between
susceptibility genes for early and late ages at
onset. Their second analysis aimed at testing
linkage to the variation of age at onset of
obesity/overweight throughout the lifespan by
defining the phenotypes BMI, overweight, and
obesity as ‘‘residual’’ from a survival analysis
perspective [Commenges, 1994; Hanson and
Knowler, 1998]. Both analyses were performed
on sib-pairs. The strongest linkage result was
obtained on chromosome 1 for obesity in the
restricted analysis, but did not replicate in the
survival analysis residual method, indicating
possible differentiation in susceptibility genes
before and after age 35 years. Evidence for linkage
on chromosomes 5 and 7 was found by both
methods. The two methods did not provide
consistent linkage results for overweight, which
might be due to a strong environmental compo-

nent controlling weight after the age at onset of 35
considered in the analysis.

DISCUSSION

SUMMARY OF LINKAGE REGIONS
IDENTIFIED IN THE GAW13 FRAMINGHAM
DATA

In this group of papers, more than 40 genome-
wide linkage analyses for a variety of pheno-
types relating to metabolic syndrome in the
Framingham sample were performed using sev-
eral different methodologies and computer soft-
ware applications. A variety of two-point and
multipoint, parametric and nonparametric statis-
tics were calculated in these studies, and family
structures from sib-pairs to full extended pedigree
structures were utilized. Despite the diversity of
approaches and phenotypes selected by each
participant in the group, several consistent regions
were identified. Table I illustrates regions which
were identified by a single group with a signal
equivalent to a LOD score of at least 3.0. Table II
shows consistent regions, defined such that at
least one analysis identified a signal over 2.0, and
at least two further analyses found evidence of a
LOD score Z1.
Analyses that considered larger pedigree struc-

tures identified 9 of the 14 regions listed in Tables
I and II. Two regions were equally well-identified
by methods incorporating large pedigrees and
methods using sib-pair data only. For the remain-
ing 3 regions, sib-pair analyses were superior. This
illustrates that there is often more power to detect
linkage when analyzing multigenerational pedi-
grees compared to breaking the same sample into
nuclear families or sib-pairs. This observation is
consistent with several earlier findings from GAW
and elsewhere [e.g., Duggirala et al., 1997].
Five regions were identified with signals of

LOD score Z3.0. These were on chromosome 2
(multipoint 3.4 at 151 cM) [North et al., 2003],
chromosome 11 (two-point 3.0 at 143.1 cM) [Mos-
lehi et al., 2003], chromosome 16 (multipoint 3.2 at
76 cM) [Geller et al., 2003], chromosome 19 (two-
point LOD score¼3.3 at 86.4 cM) [Moslehi et al.,
2003], and chromosome 22 (two-point LOD
score¼3.4 at 20.9 cM) [Horne et al., 2003]. For each
of these regions, supportive signals from other
genome-wide searches with signals of LOD score
Z1.0 were noted (Table I).
For the region on chromosome 2 (multipoint

LOD score¼3.4), five additional analyses were
supportive, with LOD evidence ranging from
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TABLE II. Consistent Regions: at least one signal with LOD 42.0 plus additional support from other studies with LOD
41.0a

Signal Location (cM) 1-LOD interval Phenotype Method Software

Chromosome 1
Engelman et al. 2.3 302 NA (2PT) Obese 2PT-sib-pair-nonpar SAGE
Horne et al. 1.9 280.1 High TG:HDL MPT-MCMC-par MCLINK
Engelman et al. 1.3 294.4 Overweight-survival 2PT-sib-pair-nonpar SAGE
North et al. 1.2 297 HDL exam 11 MPT-VC SOLAR
Martin et al. 1.1 290 HDL MPT-VC SOLAR
Horne et al. 1.0 280.1 High TG:HDL 2PT-par LINKAGE
Strug et al. 2.2 164 Mean gain BMI 2PT-VC SOLAR
Strug et al. 2.1 164 Mean BMI 2PT-VC SOLAR

Chromosome 3

Moslehi et al. 2.1 177.1 160–220 BMI MPT-sib-pair-nonpar SAGE
Moslehi et al. 2.0 200.2 BMI 2PT-sib-pair-nonpar SAGE
Horne et al. 2.0 194.5 High TG:HDL MPT-MCMC-par MCLINK
Horne et al. 1.9 194.5 High TG:HDL 2PT-par LINKAGE
Horne et al. 1.5 181 TG:HDL MPT-VC SOLAR
Horne et al. 1.4 181 TG:HDL 2PT-VC SOLAR
McQueen et al. 1.3 168 Glucose MPT-VC SOLAR
Horne et al. 1.1 166.9 High TG:HDL MPT-par GH
Cheng et al. B1.5 B165 Mean BMI (3 exams) MPT-VC SOLAR

Chromosome 5

Horne et al. 2.6 125.2 73–132 High TG:HDL MPT-par GH
Horne et al. 1.6 125.2 High TG:HDL MPT-MCMC-par MCLINK
Geller et al. 1.5 100 BMI MPT-VC SOLAR
Geller et al. 1.3 99.5 BMI MPT-VC MERLIN
Geller et al. 1.1 87.8 BMI MPT-Reg MERLIN
Engelman et al. 1.1 125.2 Obese 2PT-sib-pair-nonpar SAGE

Chromosome 6

Geller et al. 2.7 150.4 141–164 BMI MPT-VC MERLIN
Geller et al. 2.1 150.4 BMI MPT-Reg MERLIN
Geller et al. 1.9 156 BMI MPT-VC SOLAR
Martin et al. 1.7 160 BMI MPT-VC SOLAR
Yip et al. 1.4 159.3 AD 2PT-par VITESSE
Martin et al. 1.4 150 HDL MPT-VC SOLAR
Horne et al. 1.3 159.3 High TG:HDL MPT-MCMC-par MCLINK
Martin et al. 1.3 150 ln (TG) MPT-VC SOLAR
McQueen et al. 1.3 170 MS MPT-VC SOLAR
Horne et al. 1.2 150.4 TG:HDL 2PT-VC SOLAR
Horne et al. 1.1 150 TG:HDL MPT-VC SOLAR
Horne et al. 1.1 149.3 High TG:HDL MPT-par GH
North et al. 1.0 150 HDL exam 11 MPT-VC SOLAR
Liu et al. 2.5 146 BMI 2PT-VC SOLAR
Liu et al. 2.4 155 BMI 2PT-VC SOLAR
Arya et al. 3.9 158 ln BMI MPT-univariate SOLAR
Arya et al. 2.7 150 ln HDL-C MPT-univariate SOLAR
Arya et al. 6.2 152 ln BMI-ln HDL-C MPT-bivariate SOLAR
Cheng et al. B1.6 B139 Mean BMI (3 exams) MPT-VC SOLAR

Chromosome 7a

McQueen et al. 2.1 54 36–66 HDL MPT-VC SOLAR
Martin et al. 2.0 50 Chol MPT-VC SOLAR
Horne et al. 2.0 51.5 High TG:HDL MPT-par GH

Chromosome 7b

Horne et al. 2.7 163.4 NA (2PT) TG:HDL 2PT-VC SOLAR
Horne et al. 2.1 170 155–178 TG:HDL MPT-VC SOLAR
North et al. 1.6 157 HDL exam 15 MPT-VC SOLAR
Horne et al. 1.5 158.9 High TG:HDL MPT-par GH
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1.0–2.6, and all were multipoint and from model-
free analyses. The phenotypes, however, were
diverse, including HDL, BMI, glucose, and a
derived metabolic syndrome phenotype using
structural equation modeling [Stein et al., 2003].
This region may be a good candidate for a gene
involved in metabolic syndrome, rather than any
particular single trait, since this region is impli-
cated for many phenotypes of metabolic syn-
drome and a derived metabolic syndrome
phenotype.
The finding on chromosome 11 (equivalent to

multipoint LOD score¼3.0) was for BMI. Three
additional analyses were supportive in this region:
one for another BMI phenotype (overweight, BMI
427 kg/m2), but the remaining two for a low
TG:HDL ratio. The signal for the overweight
phenotype [Engelman et al., 2003], however, was
at 134.1 cM, and was much closer to that of
Moslehi et al. [2003], compared with those for a
low TG:HDL ratio [Horne et al., 2003], which were
more telomeric (161.7 cM) and may indicate a
different region. If this is the case, this region may
be more likely involved in body mass, rather than
the complete syndrome.
The region on chromosome 16 (multipoint LOD

score¼3.2) was for a linkage analysis of BMI. Four
additional analyses were supportive for this

region, with nonparametric LOD scores ranging
from 1.2–2.8. Three of the supportive findings
were for analyses using BMI phenotypes, and the
fourth for an overweight phenotype based on a
survival analysis. Thus, this region shows strong
evidence for a locus containing a gene implicated
in body mass.
Similarly, chromosome 19 (two-point LOD

score¼3.3) was identified in a genome-wide
analysis for genes involved in BMI. Additional
supportive evidence for this region was found in
three analyses: a multipoint analysis of the same
BMI phenotype, an obesity phenotype based on
survival, and an HDL phenotype. All analyses
were nonparametric.
The finding on chromosome 22 (two-point LOD

3.4) was found for the low TG:HDL phenotype.
Three additional analyses were supportive,
including both parametric and nonparametric
linkage analyses. All findings related to lipid
phenotypes and thus this region may therefore be
implicated in lipid levels, rather than the broader
metabolic syndrome.
Nine consistent regions were found, each

defined as a region where at least one signal
equivalent to a LOD score Z2.0 was found, and
two other distinct analyses indicated the same
region with a LOD score at leastZ1.0 (Table II). Of

Martin et al. 1.4 170 ln (TG) MPT-VC SOLAR
Horne et al. 1.2 163.4 High TG:HDL MPT-MCMC-par MCLINK
North et al. 1.1 177 HDL exam 20 MPT-VC SOLAR

Chromosome 10
Engelman et al. 2.6 4.7 NA (2PT) Overweight-survival 2PT-sib-pair-nonpar SAGE
Moslehi et al. 1.7 4.7 BMI MPT-sib-pair-nonpar SAGE
North et al. 1.3 22 HDL exam 15 MPT-VC SOLAR
Liu et al. 1.4 46 BMI-gluc-SBP factor 2PT-VC SOLAR

Chromosome 14

Yip et al. 2.0 0 0–30 AD MPT-Kong and Cox NPL GH
Horne et al. 1.7 18.5 High TG:DHL MPT-par GH
North et al. 1.4 3 HDL exam 20 MPT-VC SOLAR
Engelman et al. 1.2 28.6 Overweight 2PT-sib-pair-nonpar SAGE
North et al. 1.0 7 HDL exam 15 MPT-VC SOLAR

Chromosome 17

Horne et al. 2.1 129 110–end Low TG:HDL MPT-par GH
Horne et al. 1.5 131.1 Low TG:HDL MPT-MCMC-par MCLINK
Yip et al. 1.2 127.5 AD 2PT-ASP GAS
Horne et al. 1.2 138 Low TG:HDL 2PT-par LINKAGE
Horne et al. 1.1 127.5 TG:HDL 2PT-VC SOLAR

aEntries shown in italics are from other groups. Locations are in Haldane map units. MS, metabolic syndrome; AD, atherogenic
dyslipidemia; MPT, multipoint; 2PT, two-point; VC, variance-components; Reg, regression; nonpar, nonparametric; par, parametric.

TABLE II. Continued

Signal Location (cM) 1-LOD interval Phenotype Method Software

Goldin et al.S86



these regions, two regions on chromosome 5 (six
analyses with LOD scores Z1.0, best multipoint
LOD score¼2.6) and chromosome 6 (13 analyses
with LOD scores Z1.0, best multipoint LOD
score¼2.7) had the highest multipoint LOD sup-
port and stood out on inspection as areas of high
consistency. Both these regions were identified by
a diverse set of analysis types.
Six linkage signals to a region on chromosome 5

at 100–125 cM were found, and 5 of the 6 signals
were for multipoint analyses on extended pedi-
grees (variance-components and parametric link-
age analysis). The best signal (LOD score¼2.6)
was for a high TG:HDL ratio. Other phenotypes
that scored in this region were BMI and obesity.
The region on chromosome 6 around 150–

170 cM was outstanding, with 13 linkage analyses
signaling over LOD 1.0. Eleven of the 13 signals
were multipoint. Both parametric and nonpara-
metric (variance-components) methods identified
the region, with the unifying factor that all used
extended pedigrees. The best four signals were for
BMI phenotypes; however, many other pheno-
types also implicated this region: AD [Yip et al.,
2003]; HDL [Martin et al., 2003; North et al., 2003];
natural log of triglycerides [Martin et al., 2003];
TG:HDL ratio [Horne et al., 2003]; and a derived
metabolic syndrome phenotype [McQueen et al.,
2003]. Notwithstanding the lack of a LOD score
over 3.0, this region may be the best candidate
region found in the collective studies of this group
for a gene involved in metabolic syndrome.

COMPARISONS TO FINDINGS FROM OTHER
GROUPS

Since over half of the contributors to this group
analyzed BMI or some dichotomy based on BMI,
we thought it was important to compare our
results with respect to whole-genome scans for
BMI loci to the findings of investigators in other
GAW13 groups. Investigators in other GAW
groups used a variety of approaches to construct
BMI phenotypes. The majority of these groups
looked at mean BMI over either all measurements
or over a number of time points [Arya et al., 2003;
Cheng et al., 2003; Li et al., 2003; Strug et al., 2003].
One group constructed multivariate factors that
included BMI [Liu et al., 2003].
Several investigators identified BMI loci on five

chromosomes with LOD scores Z3 (Table I). Four
investigators from other GAW groups reported
LOD scores of 41 for BMI in the regions our
group identified with LOD scores Z3.0 (Table I).

Three of these four investigators reported LOD
scores of 41.0, with markers in regions that
overlapped with the regions reported by this
group. Strug et al. [2003] reported a LOD score
of 2.1 for BMI with markers at around 131 cM of
chromosome 11. Li et al. [2003] and Cheng et al.
[2003] reported LOD scores of 2.9 and B1.1,
respectively, for BMI with markers within the
same linked region on chromosome 16 identified
by some of the Group 10 investigators.
The consistent regions identified in Table II also

had supportive evidence from reports by investi-
gators from other GAW13 groups. Cheng et al.
[2003] reported a LOD score of B1.5 for BMI, with
markers at B165 cM of chromosome 3 within the
region reported by several Group 10 investigators
as containing a locus linked to BMI. Of particular
note was the locus on chromosome 6 at 150.4 cM
(1-LOD interval, 141–164 cM), where three inves-
tigators from other GAW groups also found
substantial linkage evidence. Liu et al. [2003]
reported LOD scores of 2.5 and 2.4 with markers
on this region of chromosome 6 with BMI at
146 cM and 155 cM, respectively. Cheng et al.
[2003] also reported a LOD score of B1.6 with
markers on this region. Arya et al. [2003] reported
a LOD score of 3.9 between markers on chromo-
some 6 at 158 cM and BMI. Arya et al. [2003] also
reported a LOD score of 6.2 between markers on
chromosome 6 at 152 cM and a BMI-HDL factor.
The findings by Arya et al. [2003] strengthen the
evidence presented earlier in this paper that this
region of chromosome 6 may contain a gene
involved in metabolic syndrome.

CONCLUSIONS

The Framingham Heart Study is unique in
scope, and allows for genetic analyses of traits
having a large impact on public health. The
longitudinal data collection allows many unique
questions to be addressed. All the participants of
this group analyzed one or more components of
metabolic syndrome, but vastly different ap-
proaches were taken in defining phenotypes over
the life span, including analyses at single ages,
single or multiple cross sections, minimum or
maximum, average, ever/never dichotomy, life-
time, and age at onset. All of these questions are
biologically meaningful. A number of novel
methods and novel ways of applying existing
methods were presented. While many different
findings were obtained based on the approaches

Metabolic Syndrome Phenotypes: Group 10 S87



taken, there was also converging evidence among
many analyses. Several regions of the genome
appear to be promising in terms of containing
susceptibility genes for one or more traits, and
provide a basis for future studies.
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